On the Hofer–Zehnder conjecture on ℂPd via generating functions

Author:

Allais Simon1ORCID

Affiliation:

1. IMJ-PRG, Université de Paris, 8 Place Aurélie de Nemours, Paris 75013, France

Abstract

We use generating function techniques developed by Givental, Théret and ourselves to deduce a proof in [Formula: see text] of the homological generalization of Franks theorem due to Shelukhin. This result proves in particular the Hofer–Zehnder conjecture in the nondegenerate case: every Hamiltonian diffeomorphism of [Formula: see text] that has at least [Formula: see text] nondegenerate periodic points has infinitely many periodic points. Our proof does not appeal to Floer homology or the theory of [Formula: see text]-holomorphic curves. An appendix written by Shelukhin contains a new proof of the Smith-type inequality for barcodes of Hamiltonian diffeomorphisms that arise from Floer theory, which lends itself to adaptation to the setting of generating functions.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3