Abstract
We study the$p$-adic variation of triangulations over$p$-adic families of$(\unicode[STIX]{x1D711},\unicode[STIX]{x1D6E4})$-modules. In particular, we study certain canonical sub-filtrations of the pointwise triangulations and show that they extend to affinoid neighborhoods of crystalline points. This generalizes results of Kedlaya, Pottharst and Xiao and (independently) Liu in the case where one expects the entire triangulation to extend. We also study the ramification of weight parameters over natural$p$-adic families.
Subject
Algebra and Number Theory
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On -adic -functions for Hilbert modular forms;Memoirs of the American Mathematical Society;2024-06
2. Endoscopy on SL2-eigenvarieties;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-05-28
3. Bernstein Eigenvarieties;Peking Mathematical Journal;2023-06-22
4. Symmetric power functoriality for holomorphic modular forms;Publications mathématiques de l'IHÉS;2021-10-15
5. On triangulable tensor products of B-pairs and trianguline representations;International Journal of Number Theory;2021-06-17