Author:
Newton James,Thorne Jack A.
Abstract
AbstractLet $f$
f
be a cuspidal Hecke eigenform of level 1. We prove the automorphy of the symmetric power lifting $\operatorname{Sym}^{n} f$
Sym
n
f
for every $n \geq 1$
n
≥
1
.We establish the same result for a more general class of cuspidal Hecke eigenforms, including all those associated to semistable elliptic curves over $\mathbf{Q}$
Q
.
Publisher
Springer Science and Business Media LLC
Reference128 articles.
1. Annals of Mathematics Studies;J. Arthur,1989
2. P. B. Allen, Deformations of polarized automorphic Galois representations and adjoint Selmer groups, Duke Math. J., 165 (2016), 2407–2460.
3. P. B. Allen, J. Newton and J. A. Thorne, Automorphy lifting for residually reducible $l$-adic Galois representations, II, Compos. Math., 156 (2020), 2399–2422.
4. C. Anastassiades and J. A. Thorne, Raising the level of automorphic representations of $\mathrm{GL}_{2n}$ of unitary type, J. Inst. Math. Jussieu (2021). https://doi.org/10.1017/S1474748020000602. In press.
5. K. Buzzard and F. Calegari, The 2-adic eigencurve is proper, arXiv Mathematics e-prints (2005), arXiv:math/0503362.
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献