Abstract
AbstractColmez has given a recipe to associate a smooth modular representation Ω(W) of the Borel subgroup of GL2(Qp) to a $\overline {\mathbf {F}}_p$-representation W of $\mathrm {Gal}(\overline {\mathbf {Q}}_p / \mathbf {Q}_p)$ by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W) explicitly and we prove that if W is irreducible and dim (W)=2, then Ω(W) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence.
Subject
Algebra and Number Theory
Reference16 articles.
1. [3] Berger L. , Représentations modulaires de GL2(Q p ) et représentations galoisiennes de dimension 2, Astérisque (2005), to appear.
2. Série Principale Modulo p De Groupes Réductifs p-Adiques
3. On the restriction of representations of GL2(F) to a Borel subgroup
4. [6] Colmez P. , (φ,Γ)-modules et représentations du mirabolique de GL2(Q p ), Astérisque (2007), to appear.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献