Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
-
Published:2023
Issue:
Volume:11
Page:
-
ISSN:2050-5094
-
Container-title:Forum of Mathematics, Sigma
-
language:en
-
Short-container-title:Forum of Mathematics, Sigma
Author:
Böckle GebhardORCID,
Juschka Ann-Kristin
Abstract
Abstract
Let K be a finite extension of the p-adic field
${\mathbb {Q}}_p$
of degree d, let
${{\mathbb {F}}\,\!{}}$
be a finite field of characteristic p and let
${\overline {{D}}}$
be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field
${{\mathbb {F}}\,\!{}}$
. For the universal mod p pseudodeformation ring
${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$
of
${\overline {{D}}}$
, we prove the following: The ring
$\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$
is equidimensional of dimension
$dn^2+1$
. Its reduced quotient
${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$
contains a dense open subset of regular points x whose associated pseudocharacter
${D}_x$
is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of
${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$
. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring
${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$
of
${\overline {{D}}}$
.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Reference52 articles.
1. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas;Grothendieck;Inst. Hautes Études Sci. Publ. Math.,1966
2. Linear Representations of Finite Groups
3. [Hoc14] Hochster, M. , ‘The structure theory of complete local rings’, Lecture Notes for Math 615 (2014), https://dept.math.lsa.umich.edu/~hochster/615W14/Struct.Compl.pdf.
4. On some modular representations of the Borel subgroup of GL2(Qp)
5. Pseudodeformations
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On local Galois deformation rings;Forum of Mathematics, Pi;2023