A Lie-theoretic interpretation of multivariate hypergeometric polynomials

Author:

Iliev Plamen

Abstract

AbstractIn 1971, Griffiths used a generating function to define polynomials in d variables orthogonal with respect to the multinomial distribution. The polynomials possess a duality between the discrete variables and the degree indices. In 2004, Mizukawa and Tanaka related these polynomials to character algebras and the Gelfand hypergeometric series. Using this approach, they clarified the duality and obtained a new proof of the orthogonality. In the present paper, we interpret these polynomials within the context of the Lie algebra $\mathfrak {sl}_{d+1}(\mathbb {C})$. Our approach yields yet another proof of the orthogonality. It also shows that the polynomials satisfy d independent recurrence relations each involving d2+d+1 terms. This, combined with the duality, establishes their bispectrality. We illustrate our results with several explicit examples.

Publisher

Wiley

Subject

Algebra and Number Theory

Reference15 articles.

1. [IT] Iliev P. and Terwilliger P. , The Rahman polynomials and the Lie algebra  $\mathfrak {sl}_3(\mathbb C)$ , Trans. Amer. Math. Soc., to appear.

2. Orthogonal Polynomials on the Multinomial Distribution

3. On a family of 2-variable orthogonal Krawtchouk polynomials;Grünbaum;SIGMA Symmetry Integrability Geom. Methods Appl.,2010

4. Discrete orthogonal polynomials and difference equations of several variables

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3