Drowsiness Sensing System of Driver Based on Behavioral Characteristics to Prevent Road Accidents Using RealTime Optimized Computer Vision

Author:

Abstract

A computer vision-based system called the Drowsiness Sensing Device using OpenCV was designed to identify driver drowsiness. The technology uses video frames from a camera positioned inside a car to identify different sleepiness indicators, including the length of eye closure and head position. The Eye Aspect Ratio (EAR), which aids in trying to assess drowsiness, is determined using the OpenCV library, which is also used to extract feature points and detect eye blinks. The system also has an alarm mechanism that sounds when a certain level of drowsiness is attained, alerting the driver to take the appropriate action. The proposed approach can be possibly employed to reduce the number of accidents occurred due to driver drowsiness. The suggested system is a real-time drowsiness sensing system that makes use of OpenCV to gauge a person's level of drowsiness. The technology employs a camera to take pictures of the driver's face, assessing the features like the mouth and eyes to determine how sleepy they are. The system can identify drowsiness by noticing changes in the eyes, such as drooping eyelids, and mouth movements, such as yawning. When the amount of drowsiness surpasses a predetermined threshold, the system informs the driver by assessing the photos using machine learning techniques. By prompting the driver to take a break, the proposed technology may help prevent accidents brought on by drowsy driving.

Publisher

REST Publisher

Subject

General Medicine,General Medicine,Applied Mathematics,General Medicine,General Medicine,General Medicine,General Engineering,General Materials Science,Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3