Structural, mechanical and Raman spectroscopic characterization of the layered uranyl silicate mineral, uranophane-α, by density functional theory methods

Author:

Colmenero FranciscoORCID,Timón VicenteORCID,Bonales Laura J.ORCID,Cobos JoaquínORCID

Abstract

ABSTRACTThe layered uranyl silicate clay-like mineral, uranophane-α, Ca(UO2)2(SiO3OH)2·5H2O, was studied by first-principles calculations based on the density functional theory method. The structure, observed in nature in a wide variety of compounds having the uranophane sheet anion topology, is confirmed here for the first time by means of rigorous theoretical solid-state calculations. The computed lattice parameters, bond lengths and bond angles were in very good agreement with the experimental ones, and the calculated X-ray powder trace accurately reproduced its experimental counterpart. The mechanical properties of uranophane-α, for which there are no experimental data for terms of comparison, were determined, and the satisfaction of the mechanical stability Born conditions of the structure was demonstrated by calculations of the elasticity tensor. The Raman spectrum was computed by the density functional perturbation theory and compared with the experimental spectrum. The vibrational properties of this mineral were well characterized, showing a good performance in all of the studied spectral range. Theoretical methods allowed assignment of the Raman bands to vibrations localized in different fragments within the crystal unit cell. Finally, the possibility of incorporation of strontium inside the uranophane structure was studied. The computed structure, X-ray powder trace and Raman spectrum of Sr-exchanged uranophane were very close to those of the ordinary Ca-uranophane.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3