Abstract
Here, a detailed mechanical characterization of five important anhydrous microporous aluminophosphate materials (VPI-5, ALPO-8, ALPO-5, ALPO-18, and ALPO-31) is performed using first principles methods based on periodic density functional theory. These materials are characterized by the presence of large empty structural channels expanding along several different crystallographic directions. The elasticity tensors, mechanical properties, and compressibility functions of these materials are determined and analyzed. All of these materials have a common elastic behavior and share many mechanical properties. They are largely incompressible at zero pressure, the compressibilities along the three crystallographic directions being frequently smaller than 5 TPa−1. Notably, the compressibilities of ALPO-5 and ALPO-31 along the three principal directions are smaller than this threshold. Likewise, the compressibilities of ALPO-18 along two directions are smaller than 5 TPa−1. All of the considered materials are shear resistant and ductile due to the large bulk to shear moduli ratio. Furthermore, all of these materials have very small mechanical anisotropies. ALPO-18 exhibits the negative linear compressibility (NLC) phenomenon for external pressures in the range P = 1.21 to P = 2.70 GPa. The minimum value of the compressibility along the [1 0 0] direction, ka=−30.9 TPa−1, is encountered for P = 2.04 GPa. The NLC effect in this material can be rationalized using the empty channel structural mechanism. The effect of water molecule adsorption in the channels of ALPO-18 is assessed by studying the hydrated ALPO-18 material (ALPO-18W). ALPO-18W is much more compressible and less ductile than ALPO-18 and does not present NLC effects. Finally, the effect of aging and pressure polymorphism in the mechanical properties of VPI-5 and ALPO-5 is studied. As hydration, aging leads to significant variations in the elastic properties of VPI-5 and increases substantially its compressibility. For ALPO-5, pressure polymorphism has a small impact in its elasticity at zero pressure but a large influence at high pressure.
Funder
Ministry of Science, Innovation and Universities
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献