Structural and chemical complexity of minerals: an update

Author:

Krivovichev Sergey V.ORCID,Krivovichev Vladimir G.,Hazen Robert M.ORCID,Aksenov Sergey M.ORCID,Avdontceva Margarita S.,Banaru Alexander M.,Gorelova Liudmila A.,Ismagilova Rezeda M.,Kornyakov Ilya V.,Kuporev Ivan V.,Morrison Shaunna M.,Panikorovskii Taras L.,Starova Galina L.

Abstract

AbstractThe complexities of chemical composition and crystal structure are fundamental characteristics of minerals that have high relevance to the understanding of their stability, occurrence and evolution. This review summarises recent developments in the field of mineral complexity and outlines possible directions for its future elaboration. The database of structural and chemical complexity parameters of minerals is updated by H-correction of structures with unknown H positions and the inclusion of new data. The revised average complexity values (arithmetic means) for all minerals are 3.54(2) bits/atom and 345(10) bits/cell (based upon 4443 structure reports). The distributions of atomic information amounts, chemIG and strIG, versus the number of mineral species fit the normal modes, whereas the distributions of total complexities, chemIG,total and strIG,total, along with numbers of atoms per formula and per unit cell are log normal. The three most complex mineral species known today are ewingite, morrisonite and ilmajokite, all either discovered or structurally characterised within the last five years. The most important complexity-generating mechanisms in minerals are: (1) the presence of isolated large clusters; (2) the presence of large clusters linked together to form three-dimensional frameworks; (3) formation of complex three-dimensional modular frameworks; (4) formation of complex modular layers; (5) high hydration state in salts with complex heteropolyhedral units; and (6) formation of ordered superstructures of relatively simple structure types. The relations between symmetry and complexity are considered. The analysis of temporal dynamics of mineralogical discoveries since 1875 with the step of 25 years show the increasing chemical and structural complexities of human knowledge of the mineral kingdom in the history of mineralogy. In the Earth's history, both diversity and complexity of minerals experience dramatic increases associated with the formation of Earth's continental crust, initiation of plate tectonics and the Great Oxidation event.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3