Processes of metastable-mineral formation in oxidation zones and mine waste

Author:

Majzlan Juraj

Abstract

AbstractOxidation zones and mine wastes are metal-rich, near-surface environments, natural and man-made critical zones of ore deposits, respectively. They contain a number of minerals which, despite their metastability, occur consistently and in abundance. Field studies, presented as examples in this work, show that metastable minerals form not only directly from aqueous solutions, but also from more complex precursors, such as nanoparticles, gels, X-ray amorphous solids, or clusters. Initial precipitation of metastable phases and their conversion to stable phases is described by the Ostwald's step rule. Thermodynamic data show that there is a tendency, but no rule, that structurally more complex phases are also thermodynamically more stable. The Ostwald's step rule could then state that the initial metastable phases are structurally simple and easily assembled from aqueous solutions, nanoparticles, gels, disordered solids, or clusters. The structural similarity of the precursor and the forming phase is a kinetic factor favouring the crystallisation of the new phase. Calculation of saturation indices for mine drainage solutions show that they are mostly supersaturated with respect to the stable phases and the aqueous concentrations are sufficient to precipitate metastable minerals. In our fieldwork, we often encounter gelatinous substances with copper, manganese or tungsten that slowly convert to metastable oxysalt minerals. Another possibility is the crystallisation of various metastable minerals from solid, homogeneous ‘resins’ that are X-ray amorphous. Minerals typical for near-surface environments may be stabilised by their surface energy at high specific surface areas. For example, ferrihydrite is often described as a metastable phase but can be shown to be stable with respect to nanosised hematite.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3