The structure of P21/c (Ca0.2Co0.8)CoSi2O6 pyroxene and the C2/c–P21/c phase transition in natural and synthetic Ca–Mg–Fe2+ pyroxenes

Author:

Tribaudino Mario,Mantovani Luciana,Mezzadri Francesco,Calestani Gianluca,Bromiley Geoffrey

Abstract

ABSTRACTA P21/c synthetic (Ca0.2Co0.8)CoSi2O6 pyroxene was synthesized by slow cooling from melt at high pressure. Single crystals suitable for X-ray diffraction were obtained and refined. The results were compared to those of C2/c pyroxenes along the series CaCoSi2O6–Co2Si2O6. Strong similarities in the crystal chemical mechanism of the transition with the synthetic CaFeSi2O6–Fe2Si2O6 and CaMgSi2O6–Mg2Si2O6 pyroxenes, both at an average and local level are apparent.The results, examined together with two new refinements of pigeonite in the ureilites ALHA77257 and RKPA80239 and with a set of natural and synthetic C2/c and P21/c pyroxenes, show that the average cation radius in the M2 site is the driving force for the phase transition from C2/c to P21/c. The longest M2–O3 distances and the O3–O3–O3 angles follow the same trend, dictated only by the ionic radius in M2, in either synthetic or natural pyroxenes, regardless of the ionic radius of the M1 cations. The transition also affects the difference between bridging and non-bridging oxygen atoms and the extent of tetrahedral deformation, whereas the M1–O, M2–O1 and M2–O2 distances are unaffected by the transition and are determined only by the ionic radius of the bonding cation. The structural changes between the ionic radius and the high temperature C2/c and P21/c transitions are similar, and different to the high-pressure transition.Analysis of natural and synthetic pyroxenes shows that the transition with composition occurs in strain free pyroxenes for a critical radius of 0.85 Å. Increasing strain stabilizes the P21/c structure to a higher temperature and larger cation radius.Finally, our results show that the monoclinic P21/c Ca-poor clinopyroxene, i.e the mineral pigeonite, crystallizes only at conditions where the structure is HT-C2/c, and changes to the P21/c symmetry during cooling.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3