Two generations of exsolution lamellae in pyroxene from Asuka 09545: Clues to the thermal evolution of silicates in mesosiderite

Author:

Pittarello Lidia1ORCID,McKibbin Seann12,Yamaguchi Akira3,Ji Gang45,Schryvers Dominique4,Debaille Vinciane6,Claeys Philippe1

Affiliation:

1. Analytical, Environmental, and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

2. † Present address: Geowissenschaftliches Zentrum, Georg-August Universität, Goldschmidtstraße 1, 37073 Göttingen, Germany.

3. National Institute of Polar Research, Antarctic Meteorite Research Center, 10-3 Midoricho, Tachikawa, Japan

4. Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

5. ‡ Present address: University of Lille, CNRS, INRA, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, F-59000 Lille, France.

6. Laboratoire G-Time (Géochemie: Traçage isotopique, minéralogique et élémentaire), Université Libre de Bruxelles, Av. F.D. Roosevelt 50, 1050 Brussels, Belgium B-1050 Brussels, Belgium

Abstract

Abstract Mesosiderite meteorites consist of a mixture of crustal basaltic or gabbroic material and metal. Their formation process is still debated due to their unexpected combination of crust and core materials, possibly derived from the same planetesimal parent body, and lacking an intervening mantle component. Mesosiderites have experienced an extremely slow cooling rate from ca. 550 °C, as recorded in the metal (0.25–0.5 °C/Ma). Here we present a detailed investigation of exsolution features in pyroxene from the Antarctic mesosiderite Asuka (A) 09545. Geothermobarometry calculations, lattice parameters, lamellae orientation, and the presence of clinoenstatite as the host were used in an attempt to constrain the evolution of pyroxene from 1150 to 570 °C and the formation of two generations of exsolution lamellae. After pigeonite crystallization at ca. 1150 °C, the first exsolution process generated the thick augite lamellae along (100) in the temperature interval 1000–900 °C. By further cooling, a second order of exsolution lamellae formed within augite along (001), consisting of monoclinic low-Ca pyroxene, equilibrated in the temperature range 900–800 °C. The last process, occurring in the 600–500 °C temperature range, was likely the inversion of high to low pigeonite in the host crystal, lacking evidence for nucleation of orthopyroxene. The formation of two generations of exsolution lamellae, as well as of likely metastable pigeonite, suggest non-equilibrium conditions. Cooling was sufficiently slow to allow the formation of the lamellae, their preservation, and the transition from high to low pigeonite. In addition, the preservation of such fine-grained lamellae limits long-lasting, impact reheating to a peak temperature lower than 570 °C. These features, including the presence of monoclinic low-Ca pyroxene as the host, are reported in only a few mesosiderites. This suggests a possibly different origin and thermal history from most mesosiderites and that the crystallography (i.e., space group) of low-Ca pyroxene could be used as parameter to distinguish mesosiderite populations based on their cooling history.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3