Russoite, NH4ClAs23+O3(H2O)0.5, a new phylloarsenite mineral from Solfatara Di Pozzuoli, Napoli, Italy

Author:

Campostrini Italo,Demartin Francesco,Scavini Marco

Abstract

AbstractThe new mineral russoite (IMA2015-105), NH4ClAs23+O3(H2O)0.5, was found at the Solfatara di Pozzuoli, Pozzuoli, Napoli, Italy, as a fumarolic phase associated with alacránite, dimorphite, realgar, mascagnite, salammoniac and an amorphous arsenic sulfide. It occurs as hexagonal plates up to ~300 µm in diameter and 15 µm thick, in rosette-like intergrowths. On the basis of powder X-ray diffraction measurements and chemical analysis, the mineral was recognised to be identical to the corresponding synthetic phase NH4ClAs2O3(H2O)0.5. Crystals are transparent and colourless, with vitreous lustre and white streak. Tenacity is brittle and fracture is irregular. Cleavage is perfect on {001}. The measured density is 2.89(1) g/cm3; the calculated density is 2.911 g/cm3. The empirical formula, (based on 4.5 anions per formula unit) is [(NH4)0.94,K0.06]Σ1.00(Cl0.91,Br0.01)Σ0.92As2.02O3(H2O)0.5. Russoite is hexagonal, space group P622, with a = 5.2411(7), c = 12.5948(25) Å, V = 299.62(8) Å3 and Z = 2. The eight strongest X-ray powder diffraction lines are [dobs Å(I)(hkl)]: 12.63(19)(001), 6.32(100)(002), 4.547(75)(100), 4.218(47)(003), 3.094(45)(103), 2.627(46)(110), 2.428(31)(112) and 1.820(28)(115). The structure, was refined to R = 0.0518 for 311 reflections with I > 2σ(I) and shows a different location of the ammonium cation and water molecules with respect to that reported for the synthetic analogue. The mineral belongs to a small group of phylloarsenite minerals (lucabindiite, torrecillasite and gajardoite). It contains electrically neutral As2O3 layers, topologically identical to those found in lucabindiite and gajardoite between which are ammonium cations and outside of which Cl anions. Water molecules and additional ammonium cations are located in a layer between two levels of chloride anions.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3