The visualization of flow paths in experimental studies of clay-rich materials

Author:

Wiseall A. C.,Cuss R. J.,Graham C. C.,Harrington J. F.

Abstract

AbstractOne of the most challenging aspects of understanding the flow of gas and water during testing in clay-rich low-permeability materials is the difficulty in visualizing localized flow. Whilst understanding has been increased using X-ray Computed-tomography (CT) scanning, synchrotron X-ray imaging and Nuclear Magnetic Resonance (NMR) imaging, real-time testing is problematic under realistic in situ conditions confining pressures, which require steel pressure vessels. These methods tend not to have the nano-metre scale resolution necessary for clay mineral visualization, and are generally not compatible with the long duration necessary to investigate flow in such materials. Therefore other methods are necessary to visualize flow paths during post-mortem analysis of test samples. Several methodologies have been established at the British Geological Survey (BGS), in order to visualize flow paths both directly and indirectly. These include: (1) the injection of fluorescein-stained water or deuterium oxide; (2) the introduction of nanoparticles that are transported by carrier gas; (3) the use of radiologically tagged gas; and (4) the development of apparatus for the direct visualization of clay. These methodologies have greatly increased our understanding of the transport of water and gas through intact and fractured clay-rich materials. The body of evidence for gas transport through the formation of dilatant pathways is now considerable. This study presents observations using a new apparatus to directly visualize the flow of gas in a kaolinite paste. The results presented provide an insight into the flow of gas in clay-rich rocks. The flow of gas through dilatant pathways has been shown in a number of argillaceous materials (Angeli et al., 2009; Autio et al., 2006; Cuss et al., 2014; Harrington et al., 2012). These pathways are pressure induced and an increase in gas pressure leads to the dilation of pathways. Once the gas breakthrough occurs, pressure decreases and pathways begin to close. This new approach is providing a unique insight into the complex processes involved during the onset, development and closure of these dilatant gas pathways.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3