Evaluation of the efficacy of halloysite nanotubes in the removal of acidic and basic dyes from aqueous solution

Author:

Ngulube TholisoORCID,Gumbo Jabulani Ray,Masindi Vhahangwele,Maity Arjun

Abstract

AbstractThe present work describes the removal of Direct Red 81, Methyl Orange, Methylene Blue and Crystal Violet from aqueous solution using halloysite nanotubes. The clay mineral was physicochemically characterized using various methods. The influences of pH, interaction time, initial dye concentration, adsorbent amount and temperature on adsorption were monitored and interpreted. Although previous work has shown that acidic pH conditions favour the adsorption of pollutants from aqueous systems by clay materials, in this study maximum removal was possible over a wide range of pH conditions (pH ≥2–12). Adsorption was very rapid, and equilibrium was attained within 30 min. For all four dyes studied, chemical reaction seemed significant in the rate-controlling step, and the pseudo-second-order chemical reaction kinetics provided the best correlation of the experimental data. Thermodynamically, the process was spontaneous, with Gibbs energy decreasing with increasing temperature. Halloysite would be suitable for removing dyes from aqueous solution. This was further tested by using the halloysite nanotubes for the removal of complex dyes from printing and ink industry effluents.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3