Sorption of Alizarin Red S and Methylene Blue on Halloysite from Single and Mixed Solutions

Author:

Zhou Wenfang1,Carlson Kristen2,Wu Qingfeng3ORCID,Wang Xisen4,Xu Shangping5,Li Zhaohui2ORCID

Affiliation:

1. College of Arts and Sciences, Yangtze University, 27 Yingdu Road, Jingzhou 434020, China

2. Department of Geosciences, University of Wisconsin-Parkside, 900 Wood Road, Kenosha, WI 53144, USA

3. School of Physics and Optoelectronic Engineering, Yangtze University, 1 Nanhuan Road, Jingzhou 434023, China

4. Department of Chemistry, California State University, Sacramento, CA 95819, USA

5. Department of Geosciences, University of Wisconsin Milwaukee, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA

Abstract

The extensive use of synthetic materials in modern society presents a great challenge to environmental and water quality. As such, numerous studies were dedicated to the removal of emerging contaminants from water using novel materials as sorbents or catalysts. With large reserves and low material costs, Earth material has also attracted great attention for contaminant removal. Halloysite is a 1:1 layered clay mineral with moderate cation exchange capacity that can be used for the removal of cationic contaminants. On the other hand, as it may bear positive charges on the aluminum hydroxyl sheets, it could be used to remove anionic contaminants. In this study, the removal of a cationic dye, methylene blue (MB), and an anionic dye, alizarin red S (ARS), from the water was evaluated from single and mixed solutions. The results suggested that from single solutions, MB removal was via cation exchange while ARS removal could have originated from anion exchange. From mixed solutions, their removal was mutually increased, which may be due to a synergistic effect in the presence of a type of charged dyes serving as counterions to enhance the sorption of dyes of opposite charges. This finding suggests that halloysite may serve as a sorbent for the removal of organic contaminants of different charges at the same time, which is a new perspective that needs further evaluation and expansion.

Funder

WiSys

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polyaniline/carbon hybrids: Synthesis and application for alizarin red S removal from water;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3