Possible constraints on anatectic melt residence times from accessory mineral dissolution rates: an example from Himalayan leucogranites

Author:

Ayres Michael,Harris Nigel,Vance Derek

Abstract

AbstractThe concentrations of LREE and Zr in a granitic melt formed by anatexis of a metapelitic protolith will be buffered by the stability of monazite and zircon respectively. The rate at which equilibrium is reached between dissolving monazite and zircon and a static melt is limited by the rate at which Zr and LREE can diffuse away from dissolution sites. If melt extraction rates exceed the rates at which the LREE and Zr in the melt become homogenized by diffusion, extracted melts will be undersaturated with respect to these elements. Evidence from accessory phase thermometry suggests that for many Himalayan leucogranites generated by crustal anatexis, the melts equilibrated with restitic monazite and zircon prior to extraction. In contrast, discordant temperatures determined from accessory phase thermometry suggest that tourmaline leucogranites from the Zanskar region of NW India did not equilibrate prior to extraction. Quantitative interpretation of this discordance assumes that the melt was static prior to extraction, and that accessory phase inheritance was minimal. Modelling of the time-dependant homogenization process suggests that tourmaline leucogranites generated at 700°C probably remained in contact with restitic monazite in the protolith for less than 7 ka and certainly less than 50 ka. Such rapid extraction rates suggest that deformation-driven mechanisms were important in removing these melts from their source.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3