Origin of Himalayan Eocene Adakitic Rocks and Leucogranites: Constraints from Geochemistry, U-Pb Geochronology and Sr-Nd-Pb-Hf Isotopes

Author:

Liu Hang12,Li Wenchang23,Cao Huawen13ORCID,Zhang Xiangfei12,Li Yang1ORCID,Gao Ke2,Dong Lei2,Zhang Kai24,Liu Xin24

Affiliation:

1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

2. Chengdu Center (Geosciences Innovation Center of Southwest China), China Geological Survey, Chengdu 610218, China

3. College of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

4. College of Earth Resources, China University of Geosciences, Wuhan 430074, China

Abstract

Within the Himalayan collisional belt, granites occur along two subparallel belts, namely, the Tethyan Himalayan Sequence (THS) and the Greater Himalayan Crystalline Complex (GHC). In this study, Eocene adakitic rocks and leucogranite are found only in the northern Himalayas, so further research is required to constrain their origin. Here, we present zircon U–Pb and monazite U–Th–Pb ages, Sr–Nd–Pb and Hf isotopes, and whole-rock major and trace elements for Liemai muscovite granite in the eastern Himalayan region. The U–(Th)–Pb results show that Liemai muscovite granite was emplaced at 43 Ma, and that its geochemical characteristics are similar to those of adakitic rocks of the same age (Dala, Quedang, Ridang, etc.). Combined with previous studies, both Eocene adakitic rocks and leucogranite are high-potassium calc-alkaline peraluminous granites. The former is relatively rich in large-ion lithophile elements (LILEs), such as Ba and Sr, and relatively deficient in high-field-strength elements (HFSEs), such as Nb, Ta, Zr, and Y, with weak or no Eu anomalies, and the average light rare earth element (LREE)/heavy rare earth element (HREE) ratio is 17.8. The latter is enriched in LILEs (such as Rb) and U, Ta, and Pb, and depleted in HFSEs (such as Nb and Zr), La, and Nd, with obvious negative Sr, Ba, and Eu anomalies and a mean LREE/HREE ratio of 10.7. The 87Sr/86Sr of the former is in the range of 0.707517–0.725100, εNd (t) ranged from −1.2 to −14.7, the average is −11.6, εHf (t) ranged from −0.5 to −65, the average is −12.2. The average values of (206Pb/204Pb) i, (207Pb/204Pb) i and (208Pb/204Pb) i are 18.788, 15.712 and 39.221, respectively; The 87Sr/86Sr of the latter is in the range of 0.711049~0.720429, εNd (t) ranged from −9.8 to −13.8, the average is −12.3, εHf (t) ranged from −4.2 to −10, the average is −6.7. The isotopic characteristics indicate that adakitic rocks and leucogranites are derived from the ancient lower crust, and both may be derived from metamorphic rocks of the GHC. In this paper, the origin of the two is associated with the transformation of the Himalayan tectonic system during the Eocene, and it is inferred that the deep crust may have altered the tectonic environment (temperature and pressure), resulting in an obvious episodic growth trend of leucogranite and significant development of adakitic rocks from 51 to 40 Ma. From 40 to 35 Ma, the development of Eocene magmatic rocks was hindered, and adakitic rocks disappeared. It is proposed that the genetic difference is related to the transition from high to low angles of the subducting plate in the crustal thickening process.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

International Geoscience Programme

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3