The crystal-structure determination and redefinition of eztlite, Pb22+ Fe33+(Te4+O3)3(SO4)O2Cl

Author:

Missen Owen P.,Mills Stuart J.,Spratt John,Welch Mark D.,Birch William D.,Rumsey Michael S.,Vylita Jan

Abstract

ABSTRACTThe crystal structure of eztlite has been determined using single-crystal synchrotron X-ray diffraction and supported using electron microprobe analysis and powder diffraction. Eztlite, a secondary tellurium mineral from the Moctezuma mine, Mexico, is monoclinic, space group Cm, with a = 11.466(2) Å, b = 19.775(4) Å, c = 10.497(2) Å, β = 102.62(3)° and V = 2322.6(9) Å3. The chemical formula of eztlite has been revised to ${\rm Pb}_{\rm 2}^{2 +} {\rm Fe}_3^{3 +} $(Te4+O3)3(SO4)O2Cl from that stated previously as ${\rm Fe}_6^{3 +} {\rm Pb}_{\rm 2}^{2 +} $(Te4+O3)3(Te6+O6)(OH)10·nH2O. This change has been accepted by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, Proposal 18-A. Eztlite was reported originally to be a mixed-valence Te oxysalt; however the crystal structure, bond-valence analysis and charge balance considerations clearly show that all Te is tetravalent. Eztlite contains a unique combination of elements and is only the second Te oxysalt to contain both sulfate and chloride. The crystal structure of eztlite contains mitridatite-like layers, with a repeating triangular nonameric [${\rm Fe}_9^{3 +} $O36]45– arrangement formed by nine edge-sharing Fe3+O6 octahedra, decorated by four trigonal pyramidal Te4+O3 groups, compared to PO4 or AsO4 tetrahedra in mitridatite-type minerals. In eztlite, all four tellurite groups associated with one nonamer are orientated with the lone pair of the Te atoms pointing in the same direction, whereas in mitridatite the central tetrahedron is orientated in the opposite direction to the others. In mitridatite-type structures, interlayer connections are formed exclusively via Ca2+ and water molecules, whereas the eztlite interlayer contains Pb2+, sulfate tetrahedra and Cl. Interlayer connectivity in eztlite is achieved primarily by connections via the long bonds of Pbφ8 and Pbφ9 groups to sulfate tetrahedra and to Cl. Secondary connectivity is via Te–O and Te–Cl bonds.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3