Hydrothermal fluid evolution in the ‘Botro ai Marmi’ quartz-monzonitic intrusion, Campiglia Marittima, Tuscany, Italy. Evidence from a fluid-inclusion investigation

Author:

Fulignati Paolo

Abstract

ABSTRACTThe quartz-monzonitic intrusion of ‘Botro ai Marmi’ in Tuscany, Italy, can be considered to be a typical example of an intrusion-centred magmatic hydrothermal system. The evolution of hydrothermal fluids in the ‘Botro ai Marmi’ intrusion was investigated using fluid-inclusion analyses to provide suitable physico-chemical constraints on the fluids involved in the late- to post-magmatic hydrothermal activity that affected the intrusion, providing inferences on their origin and variations of temperature and pressure with time.This work demonstrates that the earliest fluids circulating in the ‘Botro ai Marmi’ intrusion were high-temperature brines exsolved directly from the crystallizing magma. This fluid circulated in the intrusion under lithostatic conditions (P > 90 MPa, T > 540°C). A second evolutionary stage of the magmatic hydrothermal system is marked by the transition from lithostatic (>90 MPa) to hydrostatic dominated conditions (50 to 10 MPa). In this stage the fluids are also interpreted to be mainly orthomagmatic in origin but unmixed in a high-salinity brine and in a low-salinity vapour aqueous phase, at a temperature ranging from ~500 to 300°C. These fluids were responsible for the potassic alteration facies. At a later stage of hydrothermal evolution, abundant meteoric dominated fluids entered the system and are associated with propylitic alteration. This event marks the transition from a magmatic-hydrothermal system to a typical hydrothermal (‘geothermal’) system, which can be assumed to be similar to some extent to the nearby active high-enthalpy geothermal system of Larderello. Low-temperature and low-salinity meteoric water-dominated fluids characterize the latest stage of the ‘Botro ai Marmi’ hydrothermal system.

Publisher

Mineralogical Society

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3