HFSE‐REE Transfer Mechanisms During Metasomatism of a Late Miocene Peraluminous Granite Intruding a Carbonate Host (Campiglia Marittima, Tuscany)

Author:

Paoli ,Dini ,Petrelli ,Rocchi

Abstract

The different generations of calc‐silicate assemblages formed during sequential metasomatic events make the Campiglia Marittima magmatic–hydrothermal system a prominent case study to investigate the mobility of rare earth element (REE) and other trace elements. These mineralogical assemblages also provide information about the nature and source of metasomatizing fluids. Petrographic and geochemical investigations of granite, endoskarn, and exoskarn bodies provide evidence for the contribution of metasomatizing fluids from an external source. The granitic pluton underwent intense metasomatism during post‐magmatic fluid–rock interaction processes. The system was initially affected by a metasomatic event characterized by circulation of K‐rich and Ca(‐Mg)‐rich fluids. A potassic metasomatic event led to the complete replacement of magmatic biotite, plagioclase, and ilmenite, promoting major element mobilization and crystallization of K‐feldspar, phlogopite, chlorite, titanite, and rutile. The process resulted in significant gain of K, Rb, Ba, and Sr, accompanied by loss of Fe and Na, with metals such as Cu, Zn, Sn, W, and Tl showing significant mobility. Concurrently, the increasing fluid acidity, due to interaction with Ca‐rich fluids, resulted in a diffuse Ca‐metasomatism. During this stage, a wide variety of calc‐silicates formed (diopside, titanite, vesuvianite, garnet, and allanite), throughout the granite body, along granite joints, and at the carbonate–granite contact. In the following stage, Ca‐F‐rich fluids triggered the acidic metasomatism of accessory minerals and the mobilization of high-field-strength elements (HFSE) and REE. This stage is characterized by the exchange of major elements (Ti, Ca, Fe, Al) with HFSE and REE in the forming metasomatic minerals (i.e., titanite, vesuvianite) and the crystallization of HFSE‐REE minerals. Moreover, the observed textural disequilibrium of newly formed minerals (pseudomorphs, patchy zoning, dissolution/reprecipitation textures) suggests the evolution of metasomatizing fluids towards more acidic conditions at lower temperatures. In summary, the selective mobilization of chemical components was related to a shift in fluid composition, pH, and temperature. This study emphasizes the importance of relating field studies and petrographic observations to detailed mineral compositions, leading to the construction of litho‐geochemical models for element mobilization in crustal magmatic‐hydrothermal settings.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference56 articles.

1. Footprints of element mobility during metasomatism linked to a late Miocene peraluminous granite intruding a carbonate host (Campiglia Marittima, Tuscany)

2. Hydrothermal Processes and Mineral Systems;Pirajno,2009

3. Effects of metasomatism on mineral systems and their host rocks: Alkali metasomatism, skarns, greisens, tourmalinites, rodingites, black-wall alteration and listvenites;Pirajno,2013

4. Metasomatism and chemical transformation of Rock: Rock-mineral-fluid interaction in terrestrial and extraterrestrial environments;Harlov,2013

5. Quantifying Hydrothermal Alteration: A Review of Methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3