Conditional simulation of Thwaites Glacier (Antarctica) bed topography for flow models: Incorporating inhomogeneous statistics and channelized morphology

Author:

Goff John A.,Powell Evelyn M.,Young Duncan A.,Blankenship Donald D.

Abstract

AbstractThwaites Glacier, Antarctica, is experiencing rapid change and its mass could, if disgorged into the ocean, lead to ∼1 m of global sea-level rise. Efforts to model flow for Thwaites Glacier are strongly dependent on an accurate model of bed topography. Airborne radar data collected in 2004/05 provide 35 000 line km of bed topography measurements sampled every 20 m along track. At ∼15 km track spacing, this extensive dataset nevertheless misses considerable important detail, particularly: (1) resolution of mesoscale channelized morphology that can guide glacier flow; and (2) resolution of small-scale roughness between the track lines that is critical for determining topographic resistance to flow. Both issues are addressed using a conditional simulation that merges a stochastic realization (an unconditional simulation) with a deterministic surface. A conditional simulation is a non-unique interpolation that reproduces observed statistical behavior without affecting data values. Channels are resolved in the deterministic surface using an interpolation algorithm designed for sinuous channels. Small-scale roughness is resolved using a statistical analysis that accounts for heterogeneity, including an abrupt transition between ‘lowland’ and ‘highland’ morphology. Multiple realizations of the unconditional simulation can be generated to sample the probability space and allow error characterization in flow modeling.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3