Multi-Branch Deep Neural Network for Bed Topography of Antarctica Super-Resolution: Reasonable Integration of Multiple Remote Sensing Data

Author:

Cai Yiheng1ORCID,Wan Fuxing1,Lang Shinan1ORCID,Cui Xiangbin2ORCID,Yao Zijun1

Affiliation:

1. School of Information and Communications Engineering, Beijing University of Technology, Beijing 100124, China

2. Polar Research Institute of China, Shanghai 200136, China

Abstract

Bed topography and roughness play important roles in numerous ice-sheet analyses. Although the coverage of ice-penetrating radar measurements has vastly increased over recent decades, significant data gaps remain in certain areas of subglacial topography and need interpolation. However, the bed topography generated by interpolation such as kriging and mass conservation is generally smooth at small scales, lacking topographic features important for sub-kilometer roughness. DeepBedMap, a deep learning method combined with multiple surface observation inputs, can generate high-resolution (250 m) bed topography with realistic bed roughness but produces some unrealistic artifacts and higher bed elevation values in certain regions, which could bias ice-sheet models. To address these issues, we present MB_DeepBedMap, a multi-branch deep learning method to generate more realistic bed topography. The model improves upon DeepBedMap by separating inputs into two groups using a multi-branch network structure according to their characteristics, rather than fusing all inputs at an early stage, to reduce artifacts in the generated topography caused by earlier fusion of inputs. A direct upsampling branch preserves large-scale subglacial landforms while generating high-resolution bed topography. We use MB_DeepBedMap to generate a high-resolution (250 m) bed elevation grid product of Antarctica, MB_DeepBedMap_DEM, which can be used in high-resolution ice-sheet modeling studies. Moreover, we test the performance of MB_DeepBedMap model in Thwaites Glacier, Gamburtsev Subglacial Mountains, and several other regions, by comparing the qualitative topographic features and quantitative errors of MB_DeepBedMap, BEDMAP2, BedMachine Antarctica, and DeepBedMap. The results show that MB_DeepBedMap can provide more realistic small-scale topographic features and roughness compared to BEDMAP2, BedMachine Antarctica, and DeepBedMap.

Funder

Shanghai Science and Technology Development Funds

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3