Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry

Author:

Michel Remi,Rignot Eric

Abstract

Abstract High-resolution radar images of Glaciar Moreno, Argentina, acquired by the Shuttle Imaging Radar C (SIR-C) on 9 and 10 October 1994 at 24 cm wavelength (L-band), are utilized to map the glacier velocity both interferometrically and using the phase correlation method. The precision of the interferometric ice velocities is 1.8 cm d-1 (6 m a-1) (1σ). The phase correlation method measures ice velocity with a precision of 14 cm d-1 (50 m a-1) with image data at a 6 m sample spacing acquired 1 day apart. Averaged strain rates are measured with a precision of 10-4 d-1 at a 240 m sample spacing with the phase correlation method, and 10-5 d-l with radar interferometry. The phase correlation method is less precise than radar interferometry, but it performs better in areas of rapid flow, is more robust to temporal changes in glacier scattering and measures the glacier velocity in two dimensions with only one image pair. Using this technique, we find that Glaciar Moreno flows at 400 m a-1 in the terminal valley and 800 m a-1 at the calving front, in agreement with velocities recorded a decade ago. Assuming steady-state flow conditions, the vertical strain rates measured by SIR-C are combined with prior data on mass ablation to estimate the glacier thickness and ice discharge. The calculated discharge is 0.6 ± 0.2 km3 ice a-1 at 300 m elevation, and 1.1 ± 0.2 km3 ice a-1 at the equilibrium-line elevation (1150 m), which yields a balance accumulation of 6 ± 1 m ice a-1.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3