Short communication: Potential of Sentinel-1 interferometric synthetic aperture radar (InSAR) and offset tracking in monitoring post-cyclonic landslide activities on Réunion

Author:

de Michele Marcello,Raucoules Daniel,Rault Claire,Aunay Bertrand,Foumelis Michael

Abstract

Abstract. This study examines the results of an interferometric synthetic aperture radar (InSAR) and SAR offset tracking (OT) study in Cirque de Salazie (CdS), Réunion Island, France, within the context of the RENOVRISK project, a multidisciplinary programme to study the cyclonic risks in the south-western Indian Ocean. Despite numerous landslides in this territory, CdS is one of the more densely populated areas on Réunion Island. One of the aims of the project is to assess whether Sentinel-1 SAR methods can be used to measure landslide motion and/or accelerations due to post-cyclonic activity in CdS. We concentrate on the post-2017 cyclonic activity. We use the Copernicus Sentinel-1 data, acquired between 30 October 2017 and 6 November 2018. Sentinel-1 is a C-band SAR, and its signal can be severely affected by the presence of changing vegetation between two SAR acquisitions, particularly in CdS, where the vegetation canopy is well developed. This is why C-band radars such as the ones on board RADARSAT or Envisat, characterized by low acquisition frequency (24 and 36 d, respectively), could not be routinely used in CdS to measure landslide motion with InSAR in the past. In this study, we use InSAR and OT techniques applied to Sentinel-1 SAR. We find that C-band SAR on board Sentinel-1 can be used to monitor landslide motion in densely vegetated areas, thanks to its high acquisition frequency (12 d). OT stacking reveals a useful complement to InSAR, especially in mapping fast moving areas. In particular, we can highlight ground motion in the Hell-Bourg, Ilet à Vidot, Grand-Ilet, Camp Pierrot, and Le Bélier landslides.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3