Author:
Dierckx Marie,Peternell Mark,Schroeder Christian,Tison Jean-Louis
Abstract
AbstractMarine ice is an important component of ice shelves in Antarctica. It accretes in substantial amounts at weak points and below ice shelves. It is likely to exhibit peculiar rheological properties, which are crucial to understanding its potential role in stabilizing ice-shelf flow. Due to its location and consolidation processes, marine ice can present a variety of textures which are likely to influence its rheological properties. We present a new dataset of unconfined uniaxial compression experiments on folded marine ice samples that have been cut at various angles to the folds. Texture and fabric analyses are described ‘before’ and ‘after’ the deformation experiment. It is shown that, in the given stress configuration, the geometry of the anisotropy controls the rheological behaviour of the marine ice. During secondary creep, folded marine ice is harder to deform than weakly textured ice when compressed parallel or perpendicular to the folds' hinges, while the reverse is true for ice compressed at 45°. The observed range of values for the n exponent in Glen's flow law is between 2.1 and 4.1. Surprisingly, we see that tertiary creep tends to develop at a higher total strain than for randomly oriented impurity-free meteoric ice.
Publisher
International Glaciological Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献