Modelling the influence of marine ice on the dynamics of an idealised ice shelf

Author:

Craw LisaORCID,McCormack Felicity S.ORCID,Cook SueORCID,Roberts JasonORCID,Treverrow AdamORCID

Abstract

AbstractUnderstanding the dynamic behaviour of ice shelves, specifically the controls on their ability to buttress the flow of ice into the ocean, is critical for predicting future ice-sheet contributions to sea level rise. Many large ice shelves, which are predominantly composed of meteoric ice, have a basal layer of marine ice (formed from accumulated platelets at the ice–ocean interface), comprising up to 40% of their thickness locally. Differences in temperature, chemistry and microstructure between marine and meteoric ice mean the rheological properties of the ice vary throughout the ice shelf. These differences are not explicitly accounted for in ice-sheet modelling applications, and may have an important influence on ice shelf dynamics. We tested the sensitivity of a model of an idealised ice shelf to variations in temperature distribution and flow enhancement, and found that incorporating a realistic thermal profile (where the marine ice layer is isothermal) had an order of magnitude greater effect on ice mass flux and thinning than incorporating the mechanical properties of the marine ice. The presence of marine ice at the ice shelf base has the potential to significantly increase deviatoric stresses at the surface and ice mass flux across the front of an ice shelf.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3