Author:
Tai Y. C.,Gray J. M. N.T.,Hutter K.,Noelle S.
Abstract
AbstractOne means of preventing areas from being hit by avalanches is to divert the flow by straight or curved walls or tetrahedral or cylindrical-type structures. Thus, there arises the question how a given avalanche flow is changed regarding the diverted-flow depth and flow direction. In this paper a report is given on laboratory experiments performed for gravity-driven dense granular flows down an inclined plane obstructed by plane wall and tetrahedral wedge. It was observed that these flows are accompanied by shocks induced by the presence of the obstacles. These give rise to a transition from super-to subcritical flow of the granular avalanche, associated with depth and velocity changes. It is demonstrated that with an appropriate shock-capturing integration technique for the Savage-Hutter theory, the shock formation for a finite-mass granular flow sliding from an inclined plane into a horizontal run-out zone is well described, as is the shock formation of the granular flow on either side of a tetrahedral protection structure.
Publisher
International Glaciological Society
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献