Granular Flow–Obstacle Interaction and Granular Dam Break Using the S-H Model with the TVD-MacCormack Scheme

Author:

Zhou Hao,Wang Mingsheng,Li Shucai,Cao Zhenxing,Peng Anjia,Huang Guang,Cao LiqiangORCID,Fei JianboORCID

Abstract

An accurate second-order spatial and temporal finite-difference scheme is applied to solve the dynamics model of a depth-averaged avalanche. Within the framework of the MacCormack scheme, a total variation diminishing term supplements the corrector step to suppress large oscillations in domains with steep gradients. The greatest strength of the scheme lies in its high computational efficiency while maintaining satisfactory accuracy. The performance of the scheme is tested on a granular flume flow–obstacle interaction scenario and a granular dam breaking scenario. In the former, the flume flow splits into two granular streams when an obstacle is encountered. The opening between the two granular streams widens when the side length of the obstacle increases. In the simulation, shock waves with a fan-shaped configuration are captured, and successive waves in the tail of the avalanche between the two streams are observed. In the latter scenario, the average values and the fluctuations in the flow rate and velocity (at relatively steady state) decrease with the width of the breach. The capture of complex and typical granular-flow phenomena indicates the applicability and effectiveness of combining the TVD-MacCormack Scheme and S-H model to simulate dam breaking and inclined flow–obstacle interaction cases. In this study, the dense granular flow strikes on a rigid obstacle that is described by a wall boundary, rather than a topographic feature with a finite slope. This shows that the TVD-MacCormack scheme has a shock-capturing ability. The results of granular dam break simulations also revealed that the boundary conditions (open or closed) affect the collapse of the granular pile, i.e., the grains evenly breached out under closed boundary conditions, whereas the granules breaching out of the opening were mostly grains adjacent to the boundaries under open boundary conditions.

Funder

National Natural Science Foundation of China

Open Funding of the State Key Laboratory for Track Technology of High Speed Railway

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. An efficient explicit–implicit–characteristic method for solving the compressible Navier–Stokes equations;Maccormack;SIAM–AMS Proc.,1978

2. The motion of a finite mass of granular material down a rough incline

3. Computational Fluid Mechanics and Heat Transfer;Anderson,1984

4. Finite volume arbitrary Lagrangian-Eulerian schemes using dual meshes for ocean wave applications

5. A semi-Lagrangian finite difference WENO scheme for scalar nonlinear conservation laws

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3