Numerical modelling of historical front variations and the 21st-century evolution of glacier AX010, Nepal Himalaya

Author:

Adhikari Surendra,Huybrechts Philippe

Abstract

AbstractDue to the lack of measurements of ice velocity, mass balance, glacier geometry and other baseline data, model-based studies of glacial systems in the Nepal Himalaya are very limited. Here a numerical ice-flow model has been developed for glacier AX010 in order to study its relation to local climate and investigate the possible causes of its general retreat since the end of the Little Ice Age. First, an attempt is made to simulate the historical front variations, considering each climatic parameter separately. Good agreement between the observations and model projections can be obtained under the assumption that variations in glacier front position are a response to changes in temperature alone. The same assumption is made about future changes to explore the 21st-century evolution of the glacier. Under a no-change scenario, the glacier will retreat by another ∽600m by AD 2100, whereas it is projected to vanish completely during this century for all trends with a temperature rise larger than +2.5˚C by AD 2100 with respect to the 1980–99 mean. With constant precipitation at the 1980–99 mean, the model predicts that the glacier will cease to exist at AD 2083, 2056 or 2049 if the temperature rises linearly by 3˚C, 4.5˚C or 6˚C respectively by the end of this century. With an additional range of precipitation changes between –30% and +30%, the life expectancy of glacier AX010 varies by 18, 6 and 2 years for the respective temperature rises. Thus the role of precipitation becomes minimal for the higher trends of temperature rise.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3