The fast climate fluctuations during the stadial and interstadial climate states

Author:

Ditlevsen Peter D.,Ditlevsen Susanne,Andersen Katrine K.

Abstract

AbstractRapid climate changes during the last glacial period were first observed in ice-core records (Dansgaard and others, 1982). These shifts between interstadials, called Dansgaard–Oeschger (D-O) events, and stadials or deep glaciation were later seen in Atlantic sediment records (Bond and others, 1993), pointing to the ocean circulation as a strong component in the dynamics of these shifts (Wright and Stocker, 1991). the interstadial states are observed to have a characteristic ``sawtooth’’ shape, indicating a gradual drift of the stable interstadial state toward the stable stadial state. In order to contrast the two climate states, we have separated the δ18O signal from the Greenland Icecore Project ice core into periods corresponding to the two states. the climate variability in the two different climatic states is different (Johnsen and others, 1997). We find that the standard deviation is significantly larger in the stadial than in the interstadial state. Both states are found to have a larger standard deviation than the Holocene part of the record. the correlation times in the different states are difficult to obtain because of limited data resolution and diffusion of the isotopic signal. However, using a statistical technique, we have estimated the correlation times. We do not find significant differences in the correlation times, which are of the order of months, in the different climatic states. These findings are interpreted in the context of a simple linear stochastic model which provides information about the relative roles of the climatic forcing and the stability of the climate state governing the climate variability.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3