Minimax rate of estimation for invariant densities associated to continuous stochastic differential equations over anisotropic Hölder classes

Author:

Amorino Chiara1ORCID,Gloter Arnaud2ORCID

Affiliation:

1. Department of Mathematics Université du Luxembourg Esch‐Sur‐Alzette Luxembourg

2. Laboratoire de Mathématiques et Modélisation d'Evry, CNRS, Univ Evry Université Paris‐Saclay Evry France

Abstract

AbstractWe study the problem of the nonparametric estimation for the density of the stationary distribution of a ‐dimensional stochastic differential equation . From the continuous observation of the sampling path on , we study the estimation of as goes to infinity. For , we characterize the minimax rate for the ‐risk in pointwise estimation over a class of anisotropic Hölder functions with regularity . For , our finding is that, having ordered the smoothness such that , the minimax rate depends on whether or . In the first case, this rate is , and in the second case, it is , where is an explicit exponent dependent on the dimension and , the harmonic mean of smoothness over the directions after excluding and , the smallest ones. We also demonstrate that kernel‐based estimators achieve the optimal minimax rate. Furthermore, we propose an adaptive procedure for both integrated and pointwise risk. In the two‐dimensional case, we show that kernel density estimators achieve the rate , which is optimal in the minimax sense. Finally we illustrate the validity of our theoretical findings by proposing numerical results.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3