Abstract
A quantitative interpretation of oxygen-isotope data in ice cores in terms of climate has so far been hampered by the lack of a quantitative understanding of the processes which determine the isotopic composition of precipitation. Dansgaard (1964) has demonstrated that observed relations between 18O/16O and temperature can be explained reasonably well by the Rayleigh condensation model. This model is re-interpreted by noting that it predicts a dependence of the 18O/16O ratio on the water-vapour mixing ratio in the atmosphere. The relationship between the monthly data from different European stations and the water-vapour mixing ratio agrees remarkably well with the Rayleigh model. Data from Greenland snow show good correlation with the following parameters: mean annual temperature Ta, the water-vapour mixing ratio corresponding to Ta, and the accumulation rate. These correlations will be discussed in terms of the Rayleigh model and of the underlying physical processes. The correlation between 18O/16O ratios and the accumulation rate allows us to estimate the latter during the ice age. The change in the accumulation rate between the ice age and postglacial time can also be estimated from the chemical composition or the 10Be concentration. The different results will be compared.
Publisher
International Glaciological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献