Microstructure-dependent densification of polar firn derived from X-ray microtomography

Author:

Freitag Johannes,Wilhelms Frank,Kipfstuhl Sepp

Abstract

AbstractThe densification of dry polar snow and firn results in a continuous increase of density with depth accompanied by significant density fluctuations within seasonal layers. Density measurements of high spatial resolution reveal a persistent minimum of density fluctuations in the vicinity of the snow–firn transition (0.55–0.65 g cm-3) in firn-core records. In this study we give an explanation for the fluctuation minimum by applying a new method of X-ray microtomography to obtain three-dimensional (3-D) structural data of a Greenland firn core. At 13 different depths between 10 and 78 m a set of 16 samples of 40 cm total length for each depth interval was measured. A reconstructed firn segment of 40 cm covers 1–2 years of snow accumulation. Using digital image analysis techniques, different structural parameters are estimated including 3-D pore and particle sizes and specific surface areas. It is shown that the densification rates of snow and firn layers consisting of coarse particles are much higher than those consisting of fine particles within the same depth interval. This causes a density crossing of fine- and coarse-grained layers with a minimum of density variations at the crossover point. This crossing-over implies that formerly dense layers in the seasonal density signal are not of the same origin as dense layers in the deeper part of the firn column and that the seasonal density signal will totally change shape with depth. It is speculated that in coarse- and fine-grained firn the dominant mechanism of densification acts over different regimes of density.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3