Simulating complex snow distributions in windy environments using SnowTran-3D

Author:

Liston Glen E.,Haehnel Robert B.,Sturm Matthew,Hiemstra Christopher A.,Berezovskaya Svetlana,Tabler Ronald D.

Abstract

AbstractWe present a generalized version of SnowTran-3D (version 2.0), that simulates wind-related snow distributions over the range of topographic and climatic environments found globally. This version includes three primary enhancements to the original Liston and Sturm (1998) model: (1) an improved wind sub-model, (2) a two-layer sub-model describing the spatial and temporal evolution of friction velocity that must be exceeded to transport snow (the threshold friction velocity) and (3) implementation of a three-dimensional, equilibrium-drift profile sub-model that forces SnowTran-3D snow accumulations to duplicate observed drift profiles. These three sub-models allow SnowTran-3D to simulate snow-transport processes in variable topography and different snow climates. In addition, SnowTran-3D has been coupled to a high-resolution, spatially distributed meteorological model (MicroMet) to provide more realistic atmospheric forcing data. MicroMet distributes data (precipitation, wind speed and direction, air temperature and relative humidity) obtained from meteorological stations and/or atmospheric models located within or near the simulation domain. SnowTran-3D has also been coupled to a spatially distributed energy- and mass-balance snow-evolution modeling system (SnowModel) designed for application in any landscape and climate where snow is found. SnowTran-3D is typically run using temporal increments ranging from 1 hour to 1 day, horizontal grid increments ranging from 1 to 100 m and time-spans ranging from individual storms to entire snow seasons.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3