Carotenogenesis in Nannochloropsis oculata under Oxidative and Salinity Stress

Author:

Zainal Abidin Aisamuddin Ardi,Yokthongwattana Chotika,Balia Zetty Norhana

Abstract

Nannochloropsis oculata is a unicellular microalgae which is vastly found throughout the environment and have been widely studied due to its high productivity of secondary metabolites and oil content. It is majorly cultured in the aquaculture sector as fish feed and for industries for its polyunsaturated fatty acids. This work aims to study the impact of salinity and oxidative stress on the expression of carotenoid biosynthesis genes and the accumulation of their products in N. oculata via qPCR and HPLC analyses. Three genes responsible for production of high value carotenoids namely lycopene beta-cyclase (CrTL-B/LCYB), beta-carotene oxygenase (CrTO)and beta-carotene hydroxylase (CrTR) under different stresses and time points were identified and quantified, and the amount of their products namely β-carotene, zeaxanthin, canthaxanthin, and astaxanthin was measured. N. oculata was treated with different concentrations of Cu2+ ion (1, 2, and 5 ppm) and NaCl (50, 150, 250 mM) which resembles conditions of oxidative and salinity stress, respectively. RNA and carotenoids extraction, RT-PCR, qPCR and HPLC was carried out in order to identify the correlation of carotenogenesis genes expression with carotenoids production. Under exposure of both treatments, the carotenoids biosynthesis genes were upregulated up to 6-fold compared to control and targeted carotenoids were overexpressed up to 7-fold. Results from this study gave insights which are beneficial in understanding microalgae’s responses towards abiotic stress via the synthesis of carotenoids.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3