A Study on Tiredness Assessment by Using Eye Blink Detection

Author:

Islam Arafat, ,Rahaman Naimur,Rahman Ahad Md Atiqur, ,

Abstract

In this paper, the loss of attention of automotive drivers is studied by using eye blink detection. Facial landmark detection for detecting eye is explored. Afterward, eye blink is detected using Eye Aspect Ratio. By comparing the time of eye closure to a particular period, the driver’s tiredness is decided. The total number of eye blinks in a minute is counted to detect drowsiness. Calculation of total eye blinks in a minute for the driver is done, then compared it with a known standard value. If any of the above conditions fulfills, the system decides the driver is unconscious. A total of 120 samples were taken by placing the light source front, back, and side. There were 40 samples for each position of the light source. The maximum error rate occurred when the light source was placed back with a 15% error rate. The best scenario was 7.5% error rate where the light source was placed front side. The eye blinking process gave an average error of 11.67% depending on the various position of the light source. Another 120 samples were taken at a different time of the day for calculating total eye blink in a minute. The maximum number of blinks was in the morning with an average blink rate of 5.78 per minute, and the lowest number of blink rate was in midnight with 3.33% blink rate. The system performed satisfactorily and achieved the eye blink pattern with 92.7% accuracy.

Publisher

Penerbit Universiti Kebangsaan Malaysia (UKM Press)

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3