Implementation of the EAR Method in Detecting Drowsiness in Vehicle Drivers

Author:

Suryowinoto Andy,Rohman Ainur,Pambudi Wahyu Setyo

Abstract

Based on data from Polda Metro Jaya Traffic Sector, the number of traffic accidents throughout 2020 was 7,565. With a factor of 1,018 drowsy drivers or 13% of the total incidents. A solution is needed for that. The aim of this research is to calculate the average value of the duration of detection time and the number of flashes per minute, by knowing when the driver is drowsy or not drowsy. The method used is Eye Aspect Ratio (EAR), where the driver will be detected whether he is sleepy or not, by analyzing the parameters of the number of blinks per minute and the duration of the blinks. If the eyes are open (EAR value) less than 0.45 and more than or equal to 3 seconds in one blink, it is categorized as sleepy. Tests were carried out on lighting, namely: morning, afternoon, evening and night light. Test results in daylight and evening light conditions with a light intensity value of 78 lux mean the duration of drowsiness detection is 3.26 seconds and the difference in time duration with the reference theory is 0.26 seconds. Meanwhile, for night light with a light intensity value of 15 lux, the average duration of drowsiness detection is 4.04 seconds and the difference in time duration with the reference theory is 1.04 seconds. Meanwhile, the number of blinks per minute when you are sleepy is 5-8 blinks/minute and when you are not sleepy it is 13-17 blinks/minute, for morning, afternoon, evening and night light conditions. It can be concluded that overall, this system can work well for day and evening and night light conditions.

Publisher

Universitas Muhammadiyah Sidoarjo

Reference20 articles.

1. “Angka Kecelakaan Masih Tinggi, Kelalaian Pengemudi Jadi Faktor Utama.” Accessed: Apr. 05, 2024. [Online]. Available: https://otomotif.kompas.com/read/2021/03/31/193100715/angka-kecelakaan-masih-tinggi-kelalaian-pengemudi-jadi-faktor-utama

2. V. Irawan, A. Rizal, and I. Purnamasari, “Penerapan Algoritma K-Mean Clustering Pada Kecelakaan Lalu Lintas Berdasarkan Kabupaten/Kota Di Provinsi Jawa Tengah Tahun 2020,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 10, pp. 293–300, 2020, doi: 10.5281/zenodo.6820090.

3. I. Imanuddin, R. Maulana, and M. Munawir, “Deteksi Mata Mengantuk Pada Pengemudi Mobil Menggunakan Metode Viola Jones,” JOINTECS (Journal of Information Technology and Computer Science), vol. 4, no. 2, p. 45, Jul. 2019, doi: 10.31328/JOINTECS.V4I2.1005.

4. A. Hidayati and L. Y. Hendrati, “Traffic Accident Risk Analysis by Knowledge, the Use of Traffic Lane, and Speed,” Jurnal Berkala Epidemiologi, vol. 4, no. 2, p. 275, Feb. 2017, doi: 10.20473/jbe.v4i2.2016.275-287.

5. A. H. K. T. Mustofa, “Sistem Peringatan Dini Menggunakan Deteksi Kemiringan Kepala pada Pengemudi Kendaraan Bermotor yang Mengantuk,” JURNAL TEKNIK ITS , vol. 7, no. 2, pp. 281–286, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3