SATELLITE-DERIVED BATHYMETRY USING RANDOM FOREST ALGORITHM AND WORLDVIEW-2 IMAGERY

Author:

Manessa Masita Dwi Mandini,Kanno Ariyo,Sekine Masahiko,Haidar Muhammad,Yamamoto Koichi,Imai Tsuyoshi,Higuchi Takaya

Abstract

In empirical approach, the satellite-derived bathymetry (SDB) is usually derived from a linear regression. However, the depth variable in surface reflectance has a more complex relation. In this paper, a methodology was introduced using a nonlinear regression of Random Forest (RF) algorithm for SDB in shallow coral reef water. Worldview-2 satellite images and water depth measurement samples using single beam echo sounder were utilized. Furthermore, the surface reflectance of six visible bands and their logarithms were used as an input in RF and then compared with conventional methods of Multiple Linear Regression (MLR) at ten times cross validation. Moreover, the performance of each possible pair from six visible bands was also tested. Then, the estimated depth from two methods and each possible pairs were evaluated in two sites in Indonesia: Gili Mantra Island and Panggang Island, using the measured bathymetry data. As a result, for the case of all bands used the RF in compared with MLR showed better fitting ensemble, -0.14 and -1.27m of RMSE and 0.16 and 0.47 of R2 improvement for Gili Mantra Islands and Panggang Island, respectively. Therefore, the RF algorithm demonstrated better performance and accuracy compared with the conventional method. While for best pair identification, all bands pair wound did not give the best result. Surprisingly, the usage of green, yellow, and red bands showed good water depth estimation accuracy. 

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3