Exploring the Most Effective Information for Satellite-Derived Bathymetry Models in Different Water Qualities

Author:

Liu Zhen1,Liu Hao1,Ma Yue2ORCID,Ma Xin3ORCID,Yang Jian2ORCID,Jiang Yang4,Li Shaohui4

Affiliation:

1. College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. School of Electronic Information, Wuhan University, Wuhan 430072, China

3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China

4. Institute of Remote Sensing Satellite, China Academy of Space Technology, Beijing 100098, China

Abstract

Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rrs) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments.

Funder

National Natural Science Foundation of China

Key Research and Development Project of Hubei Province

Pre-research Project of Civil Aerospace

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3