Optimization of Adsorption and Desorption Time in the Extraction of Volatile Compounds in Brewed Java Arabica Coffee Using the HS-SPME/GC-MS Technique

Author:

Soetantijo Lidwina Angelica1,Lintang Hendrik O.2ORCID,Heriyanto Heriyanto1ORCID,Handojo Mitha Ayu Pratama3ORCID,Brotosudarmo Tatas Hardo Panintingjati3ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Malang, East Java, Indonesia;PT Mitra Ayu Adi Pratama, Jl. Parupuk Raya II No. 67, Padang, West Sumatera

2. Department of Chemistry, Faculty of Science and Technology, Universitas Ma Chung, Malang, East Java, Indonesia

3. Department of Food Technology, Universitas Ciputra, CitraLand CBD Boulevard, Surabaya 60219, East Java, Indonesia

Abstract

The headspace solid phase microextraction (HS-SPME) technique has been recognized as a reliable technique for characterizing the aroma profile of Arabica coffee beans. The amount and content of the detected volatile compounds depend on the volatile analyte extraction process with HS-SPME, namely the adsorption and desorption processes. However, the optimal extraction time in applying coffee volatile compounds is still limited. This research aimed to obtain the optimum adsorption and desorption time in analyzing volatile compounds in brewed Java Arabica coffee. The adsorption time was optimized for 20 to 60 minutes with 5 minutes desorption time. The desorption time was optimized from 5 to 45 minutes with a 20 minutes of adsorption time. There are 14 volatile compounds with a peak area percentage of more than 2% from adsorption and desorption optimization. The optimal adsorption time was 50 minutes, where there were 5 of 7 compounds with the most significant area, such as 2-furfural (29%), 2-acetyl furan (3%), 2-furfuryl acetate (6%), 5-methyl furfural (12%), and 2-furfuryl alcohol (14%). Meanwhile, the most optimal desorption time was 5 minutes which detected 12 compounds, while the other desorption time only detected eight compounds. Furfuryl formate (2%), pyridine (12%), and 2-furfuryl alcohol (14%) had a higher peak area than the other compounds at a desorption time of 5 minutes. The results showed the same number of volatile compounds at each adsorption time. In conclusion, the adsorption time did not affect the number of compounds detected as in the optimization of desorption time. Adsorption and desorption time is crucial in analyzing volatile compounds from coffee using the HS-SPME/GC-MS technique.

Funder

Direktorat Riset dan Pengabdian kepada Masyarakat

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3