Catalytic hydrogenation of stearic acid to 1-octadecanol using supported bimetallic Pd–Sn(3.0)/γ–Al2O3 catalyst

Author:

Azzahra Atina Sabila1,Hayati Elisa2,Rodiansono Rodiansono1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru 70714, South Kalimantan, Indonesia;Catalysis for Sustainable Energy and Environment (CATSuRe), Wetland-based Material Research Center, Lambung Mangkurat University, Banjarbaru 70714, South Kalimantan

2. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru 70714, South Kalimantan, Indonesia

Abstract

Supported bimetallic palladium-tin catalyst on gamma-alumina (γ-Al2O3) (denoted as Pd–Sn(3.0)/γ-Al2O3; Pd = 5%wt and Pd/Sn molar ratio is 3.0) has been synthesized via the hydrothermal method at a temperature of 423 K for 24 h and reduced with H2 at 673 K for 3 h. The XRD patterns of the samples showed typical diffraction peaks of support γ-Al2O3, metallic Pd, Sn, and Pd–Sn alloy phases. Diffraction peaks of metallic Pd were observed at 2θ = 39.8°; 46.6°; and 68.0°, which can be attributed to the Pd(111), Pd(200), and Pd(220), respectively, while the diffraction peaks at 2θ = 39.8° and 41.0° can be attributed to Pd2Sn and Pd3Sn2, respectively, which may overlap with the Pd(111) species. The ammonia desorption and pyridine adsorption profiles showed Lewis and Brönsted acid sites. The specific surface area (SBET) of Pd–Sn(3.0)/γ-Al2O3 catalyst was 117.83 m2/g which is dominated by a micropore structure. The highest conversion of stearic acid was 99.1% with a yield of 1-octadecanol 43.2% was obtained at temperature 513 K, initial H2 pressure of 2.0 MPa, a reaction time of 13 h, and in 2-propanol/water (4.0:1.0 v/v) solvent.

Funder

BPDP Kelapa Sawit

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3