Optimization of Cellulase Production by Aspergillus niger InaCC F506 in Solid-State Fermentation of Tofu Dreg

Author:

Shih Talisia Kresna1,Aminin Agustina L. N.1ORCID,Mulyani Nies Suci1

Affiliation:

1. Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Abstract

Indonesia has a growing demand for cellulase enzymes; however, 99% of the enzymes are imported from other countries. Aspergillus niger is well recognized for using the widely accessible tofu by-product, often known as tofu dreg, as a growth medium for synthesizing cellulase enzymes. This study aims to optimize the production of cellulase enzymes by Aspergillus niger InaCC F506 using tofu dregs as a substrate through the Solid-State Fermentation (SSF) method by varying the additives. The results showed that the E fermentation system with the composition of urea 0.5%; CMC 0.5%; KH2PO4 0.2%; MgSO4.7H2O 0.2% produced the highest cellulase enzymes from the tofu dregs substrate. The highest cellulase enzyme activity was at a fraction of ammonium sulfate saturation level of 40-60%. The optimum condition of enzyme activity was observed at pH 5 with an activity of 33 x 10-4 Units/mg protein and at 30℃ with an activity of 31 x 10-4 Units/mg protein.

Funder

Universitas Diponegoro

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3