Effect of a Detached Bi-Partition on the Drag Reduction for Flow Past a Square Cylinder

Author:

Admi Youssef1ORCID,Channouf Salaheddine1ORCID,Lahmer El Bachir1ORCID,Moussaoui Mohammed Amine1ORCID,Jami Mohammed1ORCID,Mezrhab Ahmed1ORCID

Affiliation:

1. Laboratory of Mechanics & Energy, Faculty of Sciences, Mohammed 1st University, Oujda, Morocco

Abstract

The objective of this research is to study the fluid flow control allowing the reduction of aerodynamic drag around a square cylinder using two parallel partitions placed downstream of the cylinder using the lattice Boltzmann method with multiple relaxation times (MRT-LBM). In contrast to several existing investigations in the literature that study either the effect of position or the effect of length of a single horizontal or vertical plate, this work presents a numerical study on the effect of Reynolds number (Re), horizontal position (g), vertical position (a), and length (Lp) of the two control partitions. Therefore, this work will be considered as an assembly of several results presented in a single work. Indeed, the Reynolds numbers are selected from 20 to 300, the gap spacing (0 ≤ g ≤ 13), the vertical positions (0 ≤ a ≤ 0.8d), and the lengths of partitions (1d ≤  Lp ≤  5d). To identify the different changes appearing in the flow and forces, we have conducted in this study a detailed analysis of velocity contours, lift and drag coefficients, and the root-mean-square value of the lift coefficient. The obtained results revealed three different flow regimes as the gap spacing was varied. Namely, the extended body regime for 0 ≤ g ≤ 3.9, the attachment flow regime for 4 ≤ g ≤ 5.5, and the completely developed flow regime for 6 ≤ g ≤ 13. A maximal percentage reduction in drag coefficient equal to 12.5%, is given at the critical gap spacing (gcr = 3.9). Also, at the length of the critical partition (Lpcr = 3d), a Cd reduction percentage of 12.95% was found in comparison with the case without control. Moreover, the position of the optimal partition was found to be equal to 0.8d i.e. one is placed on the top edge of the square cylinder and the second one is placed on the bottom edge. The maximum value of the lift coefficient is reached for a plate length Lp = 2d when the plates are placed at a distance g = 4. On the other hand, this coefficient has almost the same mean value for all spacings between the two plates. Similarly, the root means the square value of the lift coefficient (Clrms) admits zero values for low Reynolds numbers and then increases slightly until it reaches its maximum for Re = 300.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3