Abstract
In this investigation, two-dimensional flow past square cylinders with slip boundary have been studied with the lattice Boltzmann method. Three modes, which are a single cylinder, an oblique cylinder, and side-by-side cylinders, are investigated with Reynolds numbers from 25 to 200 while relative slip length ranges from 0 to 0.1. It can be concluded that both the flow state and the slip boundary have a great effect on the drag reduction rate. For a single square cylinder, drag forces decrease with larger slip length while the Strouhal number is almost constant. For an oblique cylinder, the slip length also has effects on the stability of the flow except the drag and lift forces. Vortex separation delays with a slip wall of oblique cylinder. For side-by-side cylinders, the jet between two cylinders is not conducive to the drag reduction rate of the slip boundary. Moreover, the application of slip boundary may also lead to additional drag force as vortex separation intensifies, which is extremely different from simple channel flows. Studies have shown that the slip boundary does not always reduce the drag in some complex flow fields. It can be concluded that the drag reduction effect of slip boundaries is more effective in uniform flow.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献