Demand response based microgrid's economic dispatch

Author:

Saeed Muhammad Hammad1ORCID,Rana MD Sohel1,Kausaraahmed MD2,El-Bayeh Claude Ziad3ORCID,Wang Fangzong1ORCID

Affiliation:

1. College of Electrical Engineering and New Energy (CEENE), China Three Gorges University (CTGU), Yichang, China

2. College of Electrical Engineering and Information, Southwest Petroleum University (SWPU), Chengdu, China

3. Department of Electrical Engineering, Bayeh Institute, Amchit, Lebanon

Abstract

The development of energy management tools for next-generation Distributed Energy Resources (DER) based power plants, such as photovoltaic, energy storage units, and wind, helps power systems be more flexible. Microgrids are entities that coordinate DERs in a persistently more decentralized fashion, hence decreasing the operational burden on the main grid and permitting them to give their full benefits. A new power framework has emerged due to the integration of DERs-based microgrids into the conventional power system. With the rapid advancement of microgrid technology, more emphasis has been placed on maintaining the microgrids' long-term economic feasibility while ensuring security and stability. The objective of this research is to provide a multi-objective economic operation technique for microgrids containing air-conditioning clusters (ACC) taking demand response into account. A dynamic price mechanism is proposed, accurately reflecting the system's actual operational status. For economic dispatch, flexible loads and air conditioners are considered demand response resources. Then, a consumer-profit model and an AC operating cost model are developed, with a set of pragmatic constraints of consumer comfort. The generation model is then designed to reduce the generation cost. Finally, a microgrid simulation platform is developed in MATLAB/Simulink, and a case is designed to evaluate the proposed method's performance. The findings show that consumer profit increases by 69.2% while ACC operational costs decrease by 18.2%. Moreover, generation costs are reduced without sacrificing customer satisfaction.

Funder

No Funding Resources associated with this work.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering,Energy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy optimization management of microgrid using improved soft actor-critic algorithm;International Journal of Renewable Energy Development;2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3