Energy optimization management of microgrid using improved soft actor-critic algorithm

Author:

Yu Zhiwen1ORCID,Zheng Wenjie1,Zeng Kaiwen1,Zhao Ruifeng1,Zhang Yanxu2,Zeng Mengdi2ORCID

Affiliation:

1. Electric Power Dispatching & Control Center of Guangdong Power Grid, Guangzhou 510600, China

2. Guangdong Provincial Key Laboratory of Smart Grid New Technology Enterprises, China Southern Power Grid Technology Co.,Ltd., Guangzhou 510180, China

Abstract

To tackle the challenges associated with variability and uncertainty in distributed power generation, as well as the complexities of solving high-dimensional energy management mathematical models in mi-crogrid energy optimization, a microgrid energy optimization management method is proposed based on an improved soft actor-critic algorithm. In the proposed method, the improved soft actor-critic algorithm employs an entropy-based objective function to encourage target exploration without assigning signifi-cantly higher probabilities to any part of the action space, which can simplify the analysis process of distributed power generation variability and uncertainty while effectively mitigating the convergence fragility issues in solving the high-dimensional mathematical model of microgrid energy management. The effectiveness of the proposed method is validated through a case study analysis of microgrid energy op-timization management. The results revealed an increase of 51.20%, 52.38%, 13.43%, 16.50%, 58.26%, and 36.33% in the total profits of a microgrid compared with the Deep Q-network algorithm, the state-action-reward-state-action algorithm, the proximal policy optimization algorithm, the ant-colony based algorithm, a microgrid energy optimization management strategy based on the genetic algorithm and the fuzzy inference system, and the theoretical retailer stragety, respectively. Additionally, com-pared with other methods and strategies, the proposed method can learn more optimal microgrid energy management behaviors and anticipate fluctuations in electricity prices and demand.

Publisher

Center of Biomass and Renewable Energy Scientia Academy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3