Control of Bidirectional DC-DC Converter for Micro-Energy Grid’s DC Feeders' Power Flow Application

Author:

Saeed Muhammad Hammad1ORCID,Fangzong Wang1,Kalwar Basheer Ahmed1ORCID

Affiliation:

1. Research Center for Microgrid of New Energy, College of Electrical Engineering and New Energy (CEENE), China Three Gorges University (CTGU), Yichang 440033, China

Abstract

Concerns about fuel exhaustion, electrical energy shortages, and global warming are growing due to the global energy crisis. Renewable energy-based distributed generators can assist in meeting rising energy demands. Micro-energy grids have become a research hotspot as a crucial interface for connecting the power produced by renewable energy resources-based distributed generators to the power system. The integration of micro-energy grid technology at the load level has been the focus of recent studies. Direct Current Micro-energy-grids have been one of the major research fields in recent years due to the inherent advantages of DC systems over AC systems, such as compatibility with renewable energy sources, storage devices, less losses, and modern loads. Nevertheless, control and stability of the grid are the paramount constituents for the reliable operation of power systems, whether at generation or load level. This research article focuses on the power flow between DC feeders of an autonomous DC micro-energy grid. To achieve this objective, a mathematical model and classical control strategy for power flow between two DC feeders are proposed using a conventional dual active bridge converter. The control objective is to minimize the DC element in the High-Frequency Transformer. Firstly, the non-linear-switched converter model and generalized average model for converter control are presented. Then, these mathematical models are used to get a small-signal linear model so a classical control strategy can be implemented. The control method enables output voltage regulation while abstaining from the high-frequency transformer's winding saturation. The stability analysis endorses the validity of the proposed control scheme. Also, the system response to load changes and varying control parameters is consistent. The simulation results validate the proposal's performance for changing converter and control parameters.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Demand response based microgrid's economic dispatch;International Journal of Renewable Energy Development;2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3