Operational planning and design of market-based virtual power plant with high penetration of renewable energy sources

Author:

Ullah Zahid1,Baseer Muhammad

Affiliation:

1. Institute for Globally Distributed Open Research and Education, United Kingdom

Abstract

Renewable energy sources are becoming more prevalent as a source of clean energy, and their integration into the power industry is speeding up. The fundamental reason for this is the growing global concern about climate change. However, the weather-dependent and uncertain nature of renewable generation raise questions about grid security particularly, when photovoltaics (PVs) and wind turbines (WTs) technologies are used. The incorporation of energy storage systems (ESS) in a virtual power plant (VPP) environment could compensate for the renewable generation's uncertainty. Where a VPP is a new concept that combines dispatchable and non-dispatchable energy sources, electrical loads, and energy storage units, enabling individual energy producers to participate in the electricity market. In this study, a market-based-VPP’s operational planning and design model is presented to assess the optimal active power dispatch of (WT, PV, and ESS) operating in the day-ahead electricity market to maximize social welfare (SW) considering the uncertainties associated with wind speed, solar irritation, and load demand. The Scenario-tree technique is applied to model the uncertainties of renewable energy sources and load demand. The proposed model performance is validated by simulation studies on a 16-bus UK generic distribution system (UKGDS). According to the simulation results, renewable energy sources and energy storage systems dispatched optimally active power to satisfy the load demand in the most efficient way possible.

Publisher

Institute of Research and Community Services Diponegoro University (LPPM UNDIP)

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi Objective Slime Mould Algorithm Based Energy Management in Hybrid Micro Grid System;Indian Science Cruiser;2024-05-09

2. Evolution and role of virtual power plants: Market strategy with integration of renewable based microgrids;Energy Strategy Reviews;2024-05

3. Virtual Power Plant as a Demand Response Aggregator;2024 28th International Electrical Power Distribution Conference (EPDC);2024-04-23

4. The impact of Energy Storage System on the flexible operation of the Renewable-Based Virtual Power Plant;2024 11th Iranian Conference on Renewable Energy and Distribution Generation (ICREDG);2024-03-06

5. Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability;International Journal of Renewable Energy Development;2024-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3